Atas dasar kritik yang kuat terhadap absolutisme, faham falibilitas terhadap pengetahuan matematika diterima. Sementara falibilitas menjadi asumsi pokok konstruktivisme sosial, fakta menunjukkan bahwa objektivitas pengetahuan matematika dan objek matematika adalah ciri matematika yang diterima secara luas, dan dapat dijelaskan peruntukannya oleh filsafat matematika apa pun. Telah ditetapkan bahwa objektivitas dipahami berada di depan umum, kesepakatan intersubjektif, yang itu berarti sosial. Dengan demikian objektivitas matematika berarti
bahwa baik pengetahuan maupun obyek matematika memiliki keberadaan otonom atas adanya kesepakatan intersubjektif, dan yang tidak tergantung pada pengetahuan subjektif sembarang individu. Karena itu perlu ditetapkan basis bersama pengetahuan ini, yang memungkinkan publik mengakses ke sana, dan jaminan kesepakatan antar-subjektif padanya. Selanjutnya, diskusi diperlebar untuk objektivitas ontologi matematika, yang merupakan dasar bagi keberadaan otonom objek matematika. Pengarang menganggap bahwa substratum pertama yang menyediakan dasar untuk objektivitas dalam matematika, yaitu bahasa.
Setelah memahami arti objektivitas yang dipahami sebagai sosial, perlu sedikit mengulangi penjelasan konstruktivis sosial tentang pengetahuan matematika objektif. Menurut konstruktivisme sosial, matematika yang terpublikasi, yaitu matematika yang dinyatakan secara simbolis dalam wilayah publik, memiliki potensi menjadi pengetahuan objektif. Penerapan logika Lakatos dalam penemuan matematika ke matematika terpublikasi ini adalah proses yang mengarah pada penerimaan sosial, dan dengan demikian ke objektivitas. Setelah aksioma matematis, teori, dugaan, dan bukti-bukti dirumuskan dan disajikan di depan umum, bahkan walaupun hanya dalam percakapan, otonom heuristik (yaitu keberterimaan sosial) mulai bekerja. Baik proses maupunhasilnya adalah objektif, diterima secara sosial. Demikian juga, baik kesepakatan implisit maupun eksplisit dan aturan bahasa dan logika yang berpijak heuristik ini adalah objektif, juga diterima secara sosial. Kesepakatan-kesepakatan dan aturan-aturan yang diklaim itu, berdasarkan paham konvensional, mendukung pengetahuan matematika (termasuk logika). Mereka memberikan dasar definisilogis dan matematika, sebagaimana dasar untuk aturan-aturan dan aksioma-aksioma dari logika dan matematika.
Referensi :
E-book The filosophy of Mathematics Education - Paul Erness
0 komentar:
Posting Komentar